Using joblib.Memory to cache function results
If we need to call our function several time with the same input data, it is beneficial to avoid recomputing the same results over and over since it is expensive. joblib.Memory
enables to cache results from a function into a specific location.
Example
from joblib import Memory
import time
import numpy as np
location = './cachedir'
memory = Memory(location, verbose=0)
rng = np.random.RandomState(42)
data = rng.randn(int(1e5), 10)
@memory.cache
def my_costly_compute_cached(data, column_index=0):
"""Simulate an expensive computation"""
time.sleep(5)
return data[column_index]
start = time.time()
data_trans = my_costly_compute_cached(data)
end = time.time()
print('\nThe function took {:.2f} s to compute.'.format(end - start))
print('\nThe transformed data are:\n {}'.format(data_trans))
start = time.time()
data_trans = my_costly_compute_cached(data)
end = time.time()
print('\nThe function took {:.2f} s to compute.'.format(end - start))
print('\nThe transformed data are:\n {}'.format(data_trans))
Outputs
The function took 5.08 s to compute.
The transformed data are:
[ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
1.57921282 0.76743473 -0.46947439 0.54256004]
The function took 0.03 s to compute.
The transformed data are:
[ 0.49671415 -0.1382643 0.64768854 1.52302986 -0.23415337 -0.23413696
1.57921282 0.76743473 -0.46947439 0.54256004]